

Institut für Hydrogeologie und Umweltgeologie Baugrunduntersuchungen

Dipl.-Geol. Wolfram Hammer

Dr. Joachim Hönig öffentlich bestellter und vereidigter Sachverständiger für Erdbau, Grundbau und Bodenmechanik

Dr. Marius Schünke öffentlich bestellter und vereidigter Sachverständiger für Hydrogeologie (Boden und Grundwasserschäden)

ERGÄNZUNG ZUM GEOTECHNISCHEN BERICHT

vom 30.11.2016

Neubaugebiet "Steinriegel" in 73240 Wendlingen

Auftraggeber: Stadt Wendlingen

73240 Wendlingen, Am Marktplatz 2

Planung: Metzger GmbH

73230 Kirchheim/Teck, Carl-Zeiss-Str. 31

Projekt-Nr.: 2-15-157

Gutachten-Nr.: 2-15-157-02-hö

_. Ausfertigung

16. November 2016

INHALTSVERZEICHNIS

1 V	orbemerkungen	4
	ücke über die Lauter	
2.1	Kernbohrungen	
2.2	Bodenkennwerte	
2.3	Homogenbereiche nach ATV DIN 18300 und 18301	
	Allgemeines	
2.3.2	Bodenklassen/ Homogenbereiche für die Baumaßnahme	
2.4	Gründung der Brücke	9
2.5	Baugrube, Erdarbeiten	10
2.5.1	Allgemeines	10
2.5.2	Gestaltung der Baugrube	10
3 St	raßenbelagsproben	13
4 G	rundwassernrohe	13

Seite 3 von 13 Seiten

Verzeichnis der Anlagen

Anlage 1: Lagepläne M 1 : 500 und unmaßstäblich

Anlage 2: Schnitt M 1 : 200/100

Anlage 3: Schichtenverzeichnis und Schichtprofile M 1: 50

Anlage 4: Fotografische Dokumentation

Anlage 5: Protokolle und Analysenergebnisse chemisches Institut Synlab

Seite 4 von 13 Seiten

1 Vorbemerkungen

Für die Erschließung des Neubaugebiets "Steinriegel" in Wendlingen wurden 2015 Baugrunduntersuchungen durchgeführt und ein Gutachten erstelllt (30.11.2015).

Als Verbindung zwischen dem Baugebiet "Am alten Sportplatz" und dem Baugebiet "Steinriegel" ist im Bereich der Austraße und der Straße Im Steinriegel bzw. nordwestlich des Gebäudes Am alten Sportplatz 50 eine Brücke geplant. Eine konkrete Planung der Brücke liegt uns nicht vor. In der ersten Erkundung 2015 wurden im Bereich der geplanten Brücke bereits zwei Kleinbohrungen (BS 1 + BS 2) abgeteuft, die aber wegen der anstehenden Felsschichten nicht bis in ausreichende Tiefe reichten.

Mit Schreiben vom 28.07.2016 bzw. email vom 29.08.2016 erteilte uns die Stadt Wendlingen auf Grundlage unseres Angebots Nr. B 2-16-199 vom 27.07.2016 den Auftrag zusätzlich zwei tiefe Kernbohrungen durchzuführen. Ferner sollten entlang der Bodelshofer Straße vier Proben und in der Austraße bei der geplanten Brücke eine Probe des Straßenbelags gezogen und auf PAK, Indikator für teerhaltigen Straßenbelag, analysiert werden.

Des Weiteren wurden wir beauftragt, aus der Grundwassermessstelle BS 18/2015 eine Grundwasserprobe zu entnehmen und auf Betonaggressivität nach DIN 4030 zu untersuchen.

2 Brücke über die Lauter

2.1 Kernbohrungen

Am 20. und 21.10.2016 wurden von der Fa. Goller Bohrtechnik zwei Kernbohrungen bis 10 m (BK 1/ Austraße) bzw. 8,50 m (BK 2/Am alten Sportplatz) Tiefe hergestellt, die Bodenschichten vom Unterzeichner aufgenommen und dokumentiert. Die Bohrungen wurden nach Lage und Höhe eingemessen. Als Höhenbezug dienten Höhen der Kanaldeckel KS0 2221 der Austraße mit 271,81 mNN sowie der Deckel Nr. 648435 der Straße Am alten Sportplatz mit 273,00 mNN (entnommen aus dem Kanalplan der Stadt Wendlingen).

Seite 5 von 13 Seiten

Die Lage der Bohrungen ist aus dem Lageplan (Anlage 1.1) ersichtlich. In Anlage 2 sind die Schichtprofile der Bohrung in einem geologischen Schnitt dargestellt.

Nach den beiden Kernbohrungen ist bis mindestens 2 m, bei BK 2, möglicherweise bis 4 m Tiefe mit kiesigen, organoleptisch unauffälligen Auffüllungen zu rechnen. Unter den Auffüllungen wurde in BK 1 bis 2,50 m, in BK 2 bis 5,30 m Lauterkies erbohrt. Unter dem Talkies standen bis zu den Bohrendtiefen harte Kalksteinbänke und feste Tonsteine des Schwarzen Jura alpha an.

2.2 Bodenkennwerte

Für die in den Bohrungen aufgeschlossenen Bodenschichten können nach den Tabellenwerten der DIN 1055 und nach Angaben in der Fachliteratur folgende charakteristischen Bodenkennwerte abgeschätzt werden:

Bodenschichten	Reibungswin- kel φ´ (Grad)			Steifeziffer E _s (MN/m ²⁾)
Kiesige Auffüllungen	30	17/9	0	4
Kies	35	19/11	0	40
Tonstein, fest	30	23/13	80	60
Kalkstein, fest bis hart	40	25/15	>100	>100

2.3 Homogenbereiche nach ATV DIN 18300 und 18301

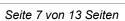
2.3.1 Allgemeines

Im August 2015 wurden neue Normen für Erdarbeiten (DIN 18 300) und für Bohrarbeiten (DIN 18 301) herausgegeben und im September 2015 mit Erscheinen der aktuellen Ausgabe der VOB auch eingeführt. Nach diesen Normen werden zur Einstufung der Böden bei Erd- und Bohrarbeiten ab der Geotechnischen Kategorie 2 wesentlich umfangreichere Untersuchungen gefordert, als dies bisher der Fall war. Dies beinhaltet u.a. auch die Entnahme ungestörter Bodenproben, wofür aufwendige Aufschlussverfahren (z.B. Kernbohrungen oder begehbare Schürfe) erforderlich sind.

Seite 6 von 13 Seiten

Nach unserer Einschätzung dürfte im vorliegenden Fall der geringere als der nach aktueller Norm geforderte Erkundungsaufwand ausreichend sein, um den Baugrund zutreffend zu beschreiben. Ein entsprechend geringerer Aufwand lag unserem Angebot auch zugrunde. Wir weisen an dieser Stelle explizit darauf hin, dass der angebotene und durchgeführte Erkundungsaufwand nicht den Anforderungen der aktuellen DIN 18 300 (Erdarbeiten) und DIN 18 301 (Bohrarbeiten) genügt. Sollte eine den angegebenen Normen genügende Baugrunderkundung gewünscht sein, so wären zusätzliche größerkalibrige Aufschlussbohrungen und die Durchführung weiterer bodenmechanischer Laborversuche erforderlich.

Die ATV DIN 18300:2012-09 fasste Boden- und Felsarten nach dem Schwierigkeitsgrad beim Bearbeiten in sieben Klassen zusammen. Sie soll im Folgenden nur als Orientierung dienen. In den neuen Normen sind die Bodenklassen durch sogenannte Homogenbereiche ersetzt.


Der Homogenbereich ist nach ATV DIN 18300 ein begrenzter Bereich bestehend aus einzelnen oder mehreren Boden- oder Felsschichten, der für einsetzbare Erdbaugeräte vergleichbare Eigenschaften aufweist.

Sind umweltrelevante Inhaltsstoffe zu beachten, so sind diese bei der Einteilung in Homogenbereiche zu berücksichtigen.

2.3.2 Bodenklassen/ Homogenbereiche für die Baumaßnahme

Nach den Richtlinien und der Boden- und Felsklassifizierung der ATV DIN 18300 und 18301 ergibt sich für die betreffende Baumaßnahme folgende Zuordnung der Bodenklassen bzw. Homogenbereiche. Die Kennwerte der Homogenbereiche gelten nicht für erdstatische Berechnungen.

Bodenschichten	Boden- bzw. Fels- klasse ATV DIN 18 300 (alt)	Boden- bzw. Fels- klasse ATV DIN 18 301 (alt)	Homogenbereiche ATV DIN 18 300:2015-08
Kiesige Auffüllungen	3 + 4	BN 1, BN 2, BS1	А
Kies	4 + 5	BN 1, BN 2, BS1	В
Tonstein, fest	6	FD1, FV2+3	С
Kalkstein, fest - hart	7	FV5+6, FD3+4	D

Homogenbereich A; Auffüllungen

Ortsübliche Bezeichnung	Auffüllungen
Kornverteilung	nicht bestimmt
Steine und Blöcke [M %]	<5
Dichte, feucht ϱ [g/cm³]	1,7 – 1,8
undränierte Scherfestigkeit C _u [kN/m ²]	0
Kohäsion C[kN/m²]	0
Wassergehalt W [%]	
Konsistenz bzw. Konsistenzzahl I _c [-]	
Plastizität I _p [%]	
Lagerungsdichte I _D [-]	
Organischer Anteil [M %]	<2
Bodengruppe nach DIN 18196	GŪ, GU
Abrasivität LAK [g/t]	<50, nicht abrasiv

Homogenbereich B; Kies

Ortsübliche Bezeichnung	Kies
Kornverteilung	nicht bestimmt
Steine und Blöcke [M %]	<5 bis 10
Dichte, feucht ρ [g/cm³]	1,9 – 2,0
undränierte Scherfestigkeit C _u [kN/m²]	0
Kohäsion C[kN/m²]	0
Wassergehalt W [%]	
Konsistenz bzw. Konsistenzzahl Ic [-]	
Plastizität I _p [%]	
Lagerungsdichte I _D [-]	nicht bestimmt
Organischer Anteil [M %]	<2
Bodengruppe nach DIN 18196	GU
Abrasivität LAK [g/t]	<50, nicht abrasiv

Ergänzung zum Geotechnischen Bericht

Homogenbereich D; Tonstein, fest

Neubaugebiet "Steinriegel" in 73240 Wendlingen

Ortsübliche Bezeichnung	Tonstein
Genetische Einheit	klastisch
Dichte ϱ [g/cm³]	2,2 – 2,4
undränierte Scherfestigkeit C _u [kN/m²]	200 - 400
Kohäsion C[kN/m²]	60 - 80
Verwitterung, Veränderungen und Veränderlichkeit	angewittert, veränderlich (Grad 2)
Druckfestigkeit des Gesteins [MN/m²]	25 – 50 MPa
Geologische Struktur, Trennflächen- richtung, Trennflächenabstand, Ge- steinskörperform	geschichtet, sehr eng- ständig, prismatisch
Abrasivität LAK [g/t]	50-100, kaum abrasiv

Homogenbereich E; Kalkstein, fest bis hart

Ortsübliche Bezeichnung	Fels
Genetische Einheit	klastisch
Dichte ϱ [g/cm³]	2,4 – 2,5
undränierte Scherfestigkeit C _u [kN/m²]	>300
Kohäsion C[kN/m²]	>100
Verwitterung, Veränderungen und Veränderlichkeit	nicht veränderlich (Grad 1)
Druckfestigkeit des Gesteins [MN/m²]	150-250 MPa
Geologische Struktur, Trennflächen- richtung, Trennflächenabstand, Ge- steinskörperform	geschichtet, engständig, rhombisch
Abrasivität LAK [g/t]	100-250, schwach abrasiv

Hinweis:

Die oben angegebenen Kennwerte der Homogenbereiche sind überwiegend eingeschätzt und beruhen nur teilweise auf bodenmechanische Laborversuche. Sollten Kennwerte laborativ bestimmt werden müssen, wären zusätzliche Baugrundaufschlüsse und Laborversuche erforderlich.

Seite 9 von 13 Seiten

Sollte es bei Erdarbeiten zu Unstimmigkeiten bezüglich der Bodenklassifizierung kommen, so kann der Baugrundgutachter hinzugezogen werden.

2.4 Gründung der Brücke

Eine Planung der Brücke liegt uns nicht vor.

Je nach Art und Konstruktion der Brücke ist eine Gründung auf dem natürlich anstehenden Lauterkies oder auf dem festen bzw. harten Kalk- und Tonsteinen des Schwarzen Jura alpha möglich. Auffüllungen sind grundsätzlich zu durchgründen.

Bei Gründung im Kies ist ein Bemessungswert des Sohlwiderstands $\sigma_{R,d}$ von $\sigma_{R,d}$ \leq 560 N/m² anzusetzen, was einen aufnehmbaren Sohldruck $\sigma_{E,k}$ = ca. 400 kN/m² entspricht. Bei Gründung auf den felsartigen Juraschichten kann der Bemessungswert des Sohlwiderstands auf \leq 1.140 kN/m² ($\sigma_{E,k} \leq$ 1.000 kN/m²) erhöht werden. Grundsätzlich ist die Gründung nach Vorliegen der Planung mit dem Gutachter abzustimmen.

Erdbebengefährdung:

Nach der Karte der Erdbebenzonen für Baden-Württemberg bzw. nach DIN 4149:2005-04 liegt Wendlingen in der *Erdbebenzone 1*.

Gemäß DIN EN 1998-1/NA NPD zu 3.1.2(1) liegt bei Gründung in den festen Schwarzjuraschichten die Baugrundklasse A, im Lauterkies die Baugrundklasse C und nach NCI NA 3.1.3 die Geologische Untergrundklasse R vor. Für die geplante Baumaßnahme gilt:

Erdbebenzone nach DIN 4149: 2005-04	1	1
Bemessungswert der Bodenbeschleunigung a _g [m/s²]	0,4	0,4
Baugrundklasse/Untergrundklasse	A-R	C – R
Untergrundparameter S	1,00	1,50

Seite 10 von 13 Seiten

2.5 Baugrube, Erdarbeiten

2.5.1 Allgemeines

Bei der Herstellung von Baugruben gelten die Richtlinien der DIN 4124. Sie besagt, dass ab einer Böschungshöhe von 1,25 m abgeböscht werden muss. Die Böschungsneigung richtet sich u. a. nach den bodenmechanischen Eigenschaften des Bodens. Nach DIN 4124, Abschnitt 3.2.2 sind folgende Böschungsneigungen ß maximal zulässig:

a) nichtbindige oder weiche, bindige Böden \$\$ \\$ < 45^{\circ}\$\$ b) steife bis halbfeste bindige Böden \$\$ \\$ < 60^{\circ}\$\$ c) Fels \$\$\$ \$\$ \\$ < 80^{\circ}\$\$

Bei steileren als den in der DIN 4124 angegebenen Böschungswinkeln, bei Böschungshöhen über 5 m, bei starkem Wasserandrang oder bei Gefährdung bestehender Gebäude oder sonstiger baulicher Anlagen (Straßen, Leitungen) ist ein rechnerischer Nachweis der Standsicherheit erforderlich oder ein Baugrubenverbau herzustellen.

2.5.2 Gestaltung der Baugrube

Wie bereits erwähnt liegt uns keine Planung vor, so dass nachfolgend nur allgemeine Hinweise gegeben werden können. Bei ausreichenden Platzverhältnissen sind freie Böschungen im Kies und in Auffüllungen unter ≤ 45° anzulegen.

Ist kein freies Abböschen möglich, wird ein Baugrubenverbau erforderlich. Hierzu bieten sich folgende Möglichkeiten an, die auch kombiniert werden können:

a) Berliner Verbau

Bei dieser Trägerbohlenwand werden vor dem Aushub Stahlträger entsprechend den erdstatischen Verhältnissen bis unter die spätere Baugrubensohle eingebunden.

Anschließend wird von oben herab Zug um Zug ausgehoben. Die Räume zwischen den Trägern werden mit Betonfertigteilen, Spritzbeton oder Holzbohlen ausgefacht. Können die Erddruck-

Seite 11 von 13 Seiten

kräfte nicht durch die Einbindung der Träger kompensiert werden, wird eine Rückverhängung der Trägerbohlenwand mit Temporärankern notwendig. Das Einbringen von Ankern bedarf generell der Zustimmung der Eigentümer der angrenzenden Grundstücke.

Es muss darauf hingewiesen werden, dass ein Berliner Verbau systembedingt kein absolut starrer Verbau ist. Das heißt, es können hinter der Verbauwand Nachsackungen des Erdreichs auftreten, die unter Umständen zu Beschädigungen angrenzender Bauwerke oder Grundstücke
führen können. Der Grad der systembedingten Verformungen ist von der Verbauhöhe und der
Art der Ausfachung abhängig. Um Verformungen möglichst gering zu halten, ist eine Spritzbetonausfachung der Holzausfachung vorzuziehen

Nach Fertigstellung des Untergeschosses und Verfüllung der Arbeitsräume kann ein Ziehen der Stahlträger nicht mehr möglich sein, so dass die Träger im Erdreich verbleiben müssen.

b) aufgelöste Bohrpfahlwand

Die Ortbetonpfähle werden ebenfalls vor dem Baugrubenaushub hergestellt und entsprechend der Statik bis unter die spätere Aushubsohle eingebunden.

Nach der Herstellung der Pfähle wird die Baugrube Zug um Zug ausgehoben und die Verbauwand gegebenenfalls mit Temporärankern rückverhängt.

Da eine Bohrpfahlwand einen verformungsarmen Verbau darstellt, sind Nachsackungen hinter der Verbauwand bei fachgerechter und sorgfältiger Ausführung unwahrscheinlich.

c) Spundwand

Bei dieser wirtschaftlich sehr günstigen Verbauart werden Spundwandelemente in den Untergrund eingerammt, eingerüttelt oder eingepresst. In der Regel ist dieses Verfahren nur in steinfreien, nicht felsartigen Böden (Sand, Feinkies, schwach bindige Böden) möglich. Es ist daher vorab zu prüfen, ob bei den vorliegenden Untergrundverhältnissen ein Spundwandverbau technisch möglich ist, da eine Einbindung der Spundwandelemente bis unter die Baugrubensohle in

Seite 12 von 13 Seiten

die Schwarzjuraschichten erforderlich ist. Hier könnten oder müssten vermutlichen Auflockerungs- oder Austauschbohrungen die Anwendbarkeit erst ermöglichen.

Weiterhin ist zu beachten, dass beim Einrammen der Spundwandelemente starker Lärm und Erschütterungen auftreten, was eine weitere Einschränkung der Anwendbarkeit dieser Verbaumethode im innerstädtischen Bereich darstellt (v.a. auch wegen möglicher Bauschäden an benachbarten Gebäuden).

Bemessung von Verpressankern:

Die Vorbemessung von normgerecht nach DIN EN 1537:2001-01 hergestellten Verpressankern mit Nachverpressung kann nach *OSTERMAYER*¹ erfolgen. Folgende Grenzlasten bzw. Bruchwerte können angesetzt werden:

Bodenschicht	Schichtunterkan- te [mNN]	Grenzlast (Bruchwert) [kN]	Mantelreibung (Bruchwert) cal _™ [kN/m²]
Sand, Auelehm	ca. 259,00		200 ^{a)}
Kies, mitteldicht bis dicht gelagert	ca. 255,00	500/700/900 ^{b)}	
Stubensandsteinschichten			800 ^{c)}

a) ab 5 m Krafteintragungslänge Reduktion auf 150 kN/m², bei 8 m Länge gemäß Bild 12a Grundbau-Taschenbuch, Werte zwischen 5 m und 8 können interpoliert werden

Die Gebrauchslasten können unter Ansatz der entsprechenden Teilsicherheitsbeiwerte für den Grenzzustand GZ 1B nach DIN 1054 abgeschätzt werden.

b) Krafteintragungslänge 3 m / 6 m / 9 m, Zwischenwerte können interpoliert werden

c) Krafteintragungslänge 3 – 6 m

¹ Ostermayer, H.: Verpressanker. In: Witt, K. J. (Hrsg): Grundbau-Taschenbuch, Teil 2 - Geotechnische Verfahren. 7., überarbeitete und aktualisierte Auflage 2009, Ernst und Sohn, Berlin.

Seite 13 von 13 Seiten

3 Straßenbelagsproben

Aus der Schwarzdecke der Bodelshofer Straße wurden vier (KB 1 – KB 4) aus der Austraße bei der geplanten Brücke (KB 5) eine Kernprobe entnommen. Dabei ergaben sich folgende Belagschichten:

KB 1: 4,0 cm

KB 2: 5,5 cm

KB 3: 6,0 cm

KB 4: 5,5 cm

KB 5: 6,0 cm

Die Lage der Kernproben ist aus dem Lageplan der Anlage 1.2 ersichtlich.

Nach den Analysenergebnissen der Schwarzdecke der Au- und der Bodelshofer Straße sind die Proben KB 1 und KB 3 teerhaltig (KB 3) bis stark teerhaltig (KB 1), die Proben aus KB 2, KB 4 und KB 5 (Austraße) nicht teerhaltig. Nach der Deponieverordnung (DepV²) ist bei KB 1 die Einstufung DK II, bei KB 3 DK I, bei KB 2, KB 4 und KB 5 DK 0. Die Analyssenprotokolle liegen bei.

4 Grundwasserprobe

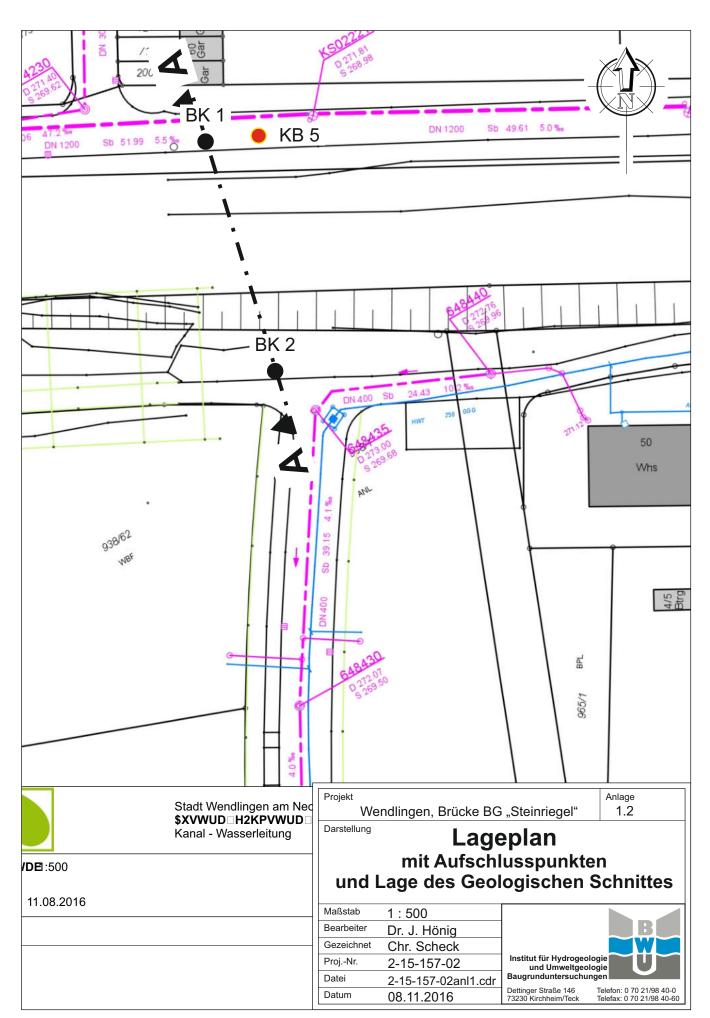

Die Analyse der Grundwasserprobe aus der Messstelle BS 18 /2015 ergab, dass das Grundwasser **nicht betonangreifend** ist. Das Analysenprotokoll liegt bei.

Kirchheim/Teck, den 16. November 2016

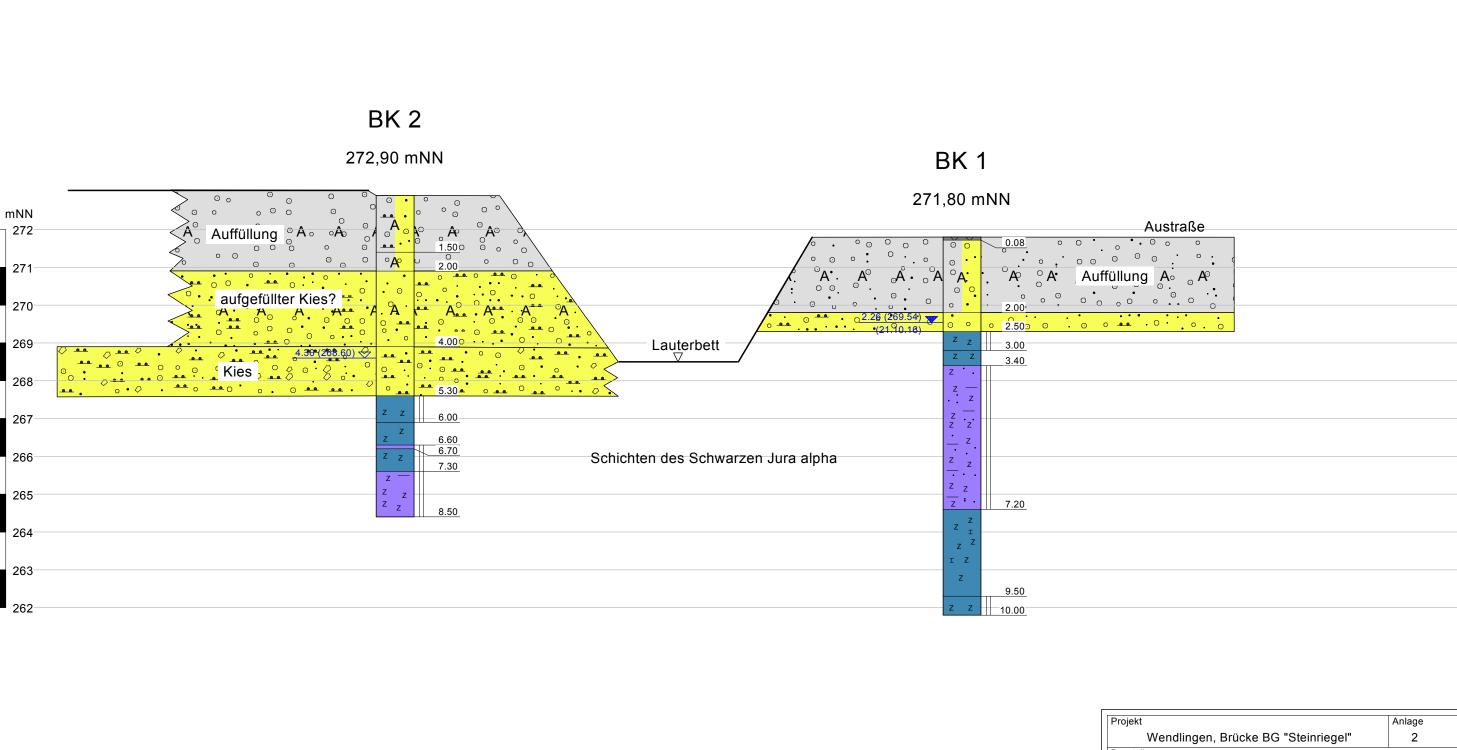
² DepV Deponieverordnung (DepV): Verordnung über Deponien und Langzeitlager, 27.04.2009

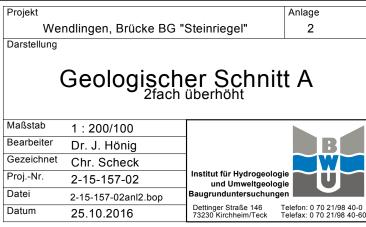
Projekt
Wendlingen, Baugebiet "Steinriegel"
Anlage
1.1

Darstellung

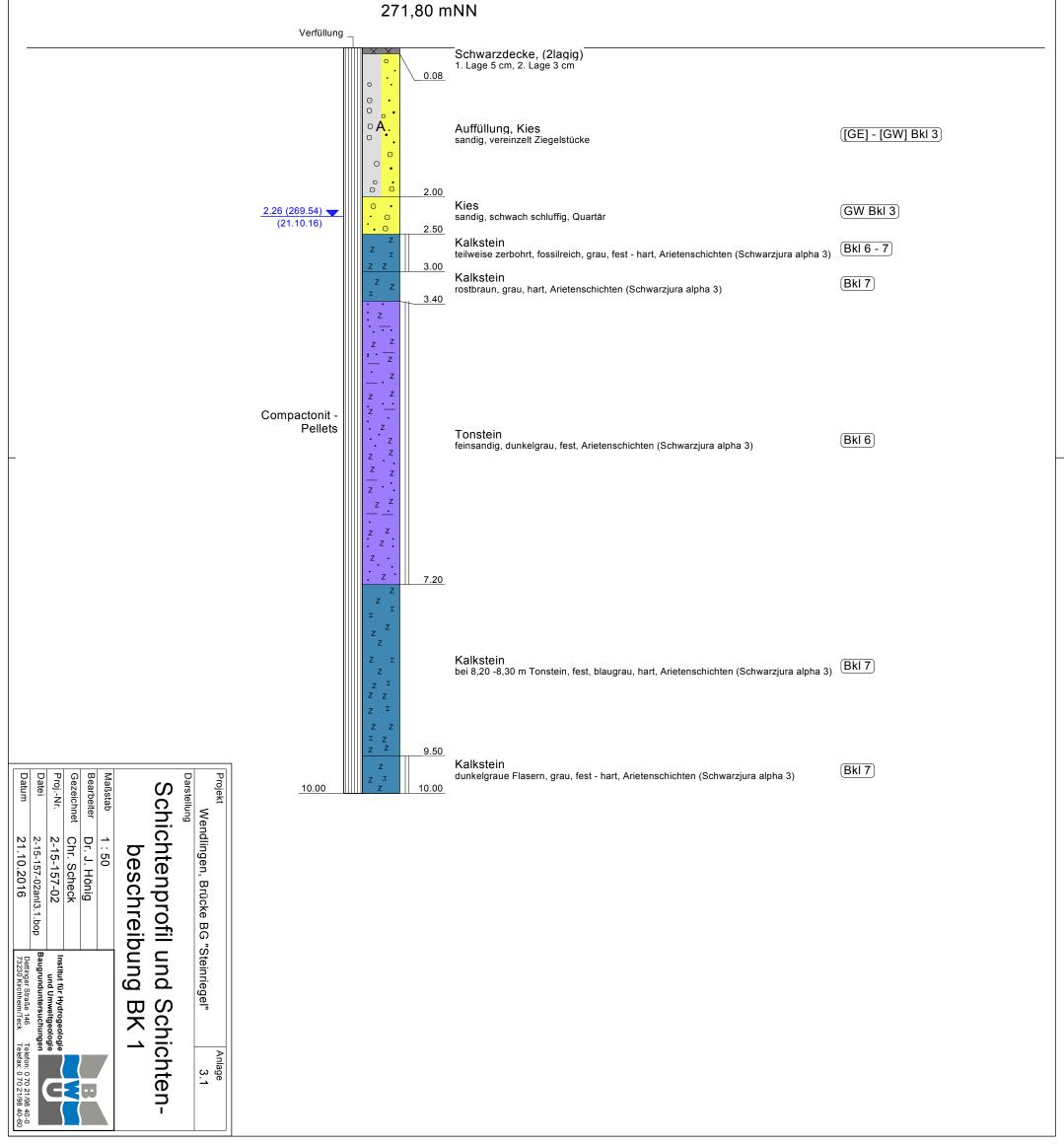

Übersichtslageplan Ausschnitt aus der TK 25 Blatt 7322 Kirchheim u. Teck

Maßstab	1:25 000
Bearbeiter	Dr. J. Hönig
Gezeichnet	Chr. Scheck
ProjNr.	2-15-157
Datei	2-15-157-01anl1.cdr
Datum	23.10.2015




Veröffentlichung genehmigt vom Landesvermessungsamt unter Az. 2851.2 - D/2423 thematisch ergänzt durch BWU

Anlage 3

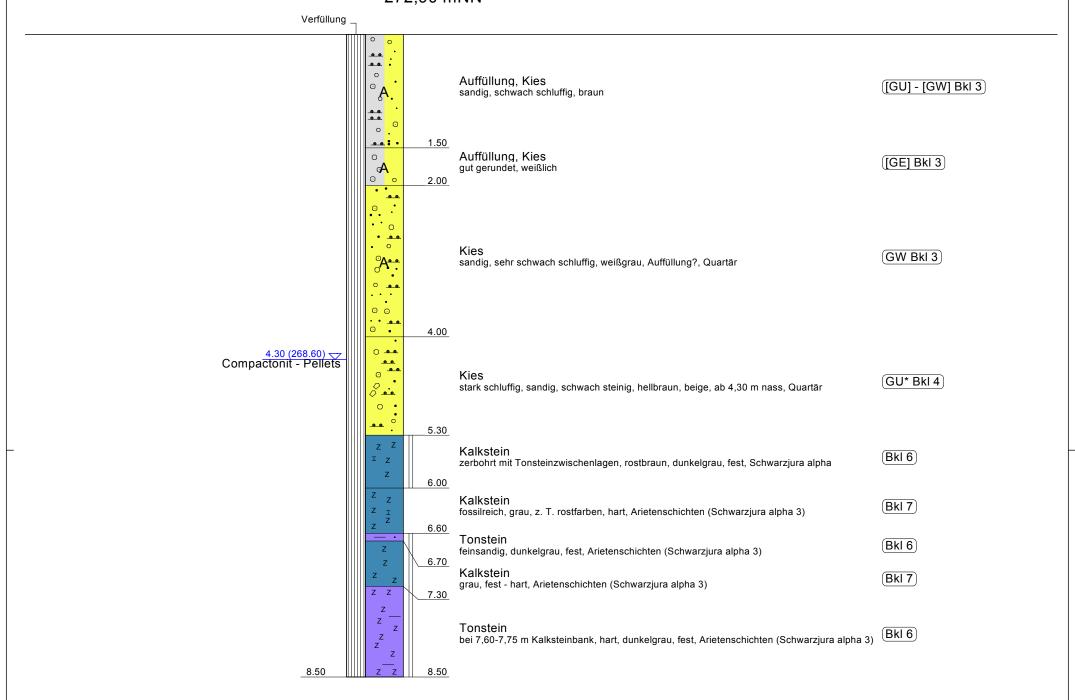

Schichtenverzeichnis und Schichtprofile M 1 : 50

Aufschlussart	Kernbohrung	Nutzung	-	Lage	s. Lageplan
Bohrdurchmesser	178 mm	Versiegelung	-	rechts	nicht bekannt
Methode	ram (Schappe)	Reliefformtyp	-	hoch	nicht bekannt
Zeitraum	20.10.2016	Neigung	-	Bem.:	
Bohrkernaufnahme	Dr. J. Hönig				

Probenart: B = Boden BI = Bodenluft W = Wasser

Bodengruppen nach DIN 18 196 Bodenklassen nach DIN 18 300:2012-09 Homogenbereiche nach DIN 18 300:2015-08

BK 1



Aufschlussart	Kernbohrung	Nutzung	-	Lage	s. Lageplan
Bohrdurchmesser	178 mm	Versiegelung	-	rechts	nicht bekannt
Methode	ram (Schappe)	Reliefformtyp	-	hoch	nicht bekannt
Zeitraum	21.10.2016	Neigung	-	Bem.:	
Bohrkernaufnahme	Dr. J. Hönig				

Probenart: B = Boden BI = Bodenluft W = Wasser Bodengruppen nach DIN 18 196 Bodenklassen nach DIN 18 300:2012-09 Homogenbereiche nach DIN 18 300:2015-08

BK 2

272,90 mNN

Telefon: 0 70 21/98 40-0 Telefax: 0 70 21/98 40-60	Dettinger Straße 146 73230 Kirchheim∕Teck	21.10.2016	Datum
gen	Baugrunduntersuchungen	2-15-157-02anl3.2.bop	Datei
	Institut für Hydrogeologie und Umweltgeologie	2-15-157-02	ProjNr.
Z Z		Chr. Scheck	Gezeichnet
W		Dr. J. Hönig	Bearbeiter
		1:50	Maßstab
2	ung BK	beschreibung BK 2	
ichten-	und Sch	Schichtenprofil und Schichten-	Schi
			Darstellung
3.2	Steinriegel"	Wendlingen, Brücke BG "Steinriegel"	Wei
Anlage			Projekt

Anlage 4

Fotografische Dokumentation

Fotodokumentation Bohrung BK 1

Tiefe (m)

1 - 2

2 - 3

3 - 4

4 - 5

5 - 6

6 - 7

7 - 8

8 - 9

9 - 10

Fotodokumentation Bohrung BK 2

Tiefe (m)

0 - 1

1 - 2

2 - 3

3 - 4

4 - 5

5 - 6

6 - 7

7 - 8

8 - 8,50

Anlage 5

Protokolle und Analysenergebnisse chemisches Institut Synlab

BWU

MD 7-09

Probenahmeprotokoli Grundwasser

Seite 1 von 1 Version: 3.1

Ausgabe: 17.07.2011

N:\Büro\Qualitätsmanagement\QMH 3.4 2011\Musterdateien\MD-7-09.doc

Projektnummer:		2-1	5.15						ahme	07.11	16	(Datum)
Projektbezeichn	ung	10	wellinge, BG			n mesos -	Probenahme nach DIN 38 40						
Probeneh		ven	mue	, , ,	y (3. Q.	F	robenahm	e nach DI	N 38 40	02 Teil 13		1	
			m	ч									
Messstellenbeze	eichnu	ing	ne	10			Lag	e der Mes	sstelle	□ Oberstro	om I	☐ Unters	strom
			Bs	18									
(G		tswert (rüger)			l unbekan	nt	Ai	t der Mes	sstelle	☐ Messste	-	□ Brunn	en
Hochwert							Durchn	resser	60				
Höhe ü. NN (ROK)		🗆 unbekannt			nt	Filterstrecke (unter ROK)				Zoff	/ mm		
I IOIIE U. NIN (NON)		,m 🗆 unbekannt			nt	T MOTOGOOM (WINDS TYOTY)			bis .	,_	_ m		
										☐ unbeka	annt		
Tiefe der Messste	elle (u.	ROK)	<u>_6</u> ,6	<u>23</u> m □u	ınbekannt	Bemi	erkung zur	Messstell	е				
Wasserspiegel vor Probenahme [unter ROK]		4,5	3_ m			Förderstrom			7:0	l/m	nin		
Wasserspiegel bei Probenahme [unter ROK]			m			Star	nd Wasse	rzähler		-!	m³		
Pumpeneinlauf [unter	ROK]	5, 5	3 m		Fö	rderdauer	bis Probei	nahme	15	mi		
Probenahmegerät		☐ Tauchpumpe ☐ MP1 ☐ Saugpumpe ☐ Schöpfer				Fördervolumen bis zur Probenahme			1 7.				
		№ Peristaltikpumpe					Probei	nahme	_20	Lit	ег		
			□ Zapt		□ Teflon		Benetzt	es Rohrvo	lumen		1 24		
Schlauchma			□ HDF	E 🗆	**********						Lit		
Witterung Pumpprotokoll (Ze					gen □ So	chneefall	□ Schnee	schmelze		Lufttemper	atur:	3 °C	
Zeitpunkt [min]	- Citoti	IKC GD L	ogiiii i								\top		
GW-Spiegel [m]													
Leitfähigkeit [µS/cm]	1												
pH-Wert													
Temperatur [°C]													
Sauerstoff [mg/l]													
Schüttung [l/min]													
Färbung	□ ohi □ gel			Geruch		ie matisch	G	W-Tempe	ratur	40 6			
	□we	ißlich			☐ faul	lig	I aitex	bielesis (O	. 0	131	° C		
	□ gra ⊵ brä	iu iunlich			□ jaud	OF	Leitia	higkeit (25	, (,)	779	u.C.t.		
	□ röti	lich			☐ Min		gelös	ter Sauer	stoff		μS/c	ж	
							35.50			607	mg/l		
		wach							рН	7 29	Ū		
Bodensatz	Ersta EdJa □ Ne		+	Ausgasung	g □ Ja Q*Nei	n		Re	edox	184,3	mV		
Bemerkung	<u> П</u> , (С.	111			I LA INGII		1						
					Behälte	er: 🔀 Glas	Øt PE-8	Sehälter D] Head	space		Vol. in m	nl:
Probe-Nr.	ßS	18			Dichtur	ng: 🗗 PTF	E 🗆 Kuns	tstoff [1 Schlif	fst.		1500	2
Transport		⊠ Ab	dunkelu	ng D‡Küh	lung								
☑ Konservierung	mit:	na	mer	Du (My									

SYNLAB Umweltinstitut GmbH - Hohnerstraße 23 - 70469 Stuttgart

BWU Institut für Umwelt- und Hydrogeologie Herr Dr. Hönig Dettinger Str. 146 73230 Kirchheim / Teck

SYNLAB Umweltinstitut GmbH **Umweltinstitut Stuttgart**

Telefon:

0711-16272-0

Telefax: E-Mail:

0711-16272-51 sui-stuttgart@synlab.com

www.synlab.de

Internet:

Seite 1 von 2

Datum:

15.11.2016

Prüfbericht Nr.:

UST-16-0137255/02-1

Auftrag-Nr.:

UST-16-0137255

Ihr Auftrag:

schriftlich vom 08.11.2016

Projekt:

BG Steinriegel, Wendlingen / Proj.-Nr.: 2-15-157

Eingangsdatum:

08.11.2016

Probenahme durch:

Auftraggeber

Probenahmedatum:

07.11.2016

Prüfzeitraum:

08.11.2016 - 15.11.2016

Probenart:

Grundwasser

Prüfbericht Nr.

Probenbezeichnung:

BS 18

Probe Nr.

UST-16-0137255-03

Laboruntersuchungen

Parameter	Einheit	Messwert	Verfahren
Aussehen		wenig Bodensatz	sensorisch
Geruch		ohne	sensorisch
Farbe		farblos	sensorisch
pH-Wert		7,12	DIN EN ISO 10523 (C 5)
Gesamthärte	°dH	24,6	DIN 38 409-H 6
Nichtkarbonathärte	°dH	5,50	DIN 38 409-H 6
Karbonathärte	°dH	19,1	DIN 38 409-H 7-2
Permanganat-Index (als O2)	mg/l	<0,50	DIN EN ISO 8467
Ammonium	mg/f	0,010	DIN ISO 15923-1
Chlorid	mg/l	14,9	DIN EN ISO 10304-1
Sulfat	mg/l	51,5	DIN EN ISO 10304-1
Sulfid gelöst (S)	mg/l	<0,01	DIN 38 405-D 26
Calcium	mg/I	150	DIN EN ISO 14911 (E 34)
Magnesium	mg/l	16,0	DIN EN ISO 14911 (E 34)
Kalktösekapazität	mg CO2/I	<1	DIN 4030

Eine auszugsweise Veröffentlichung bedarf der Zustimmung der SYNLAB Umweltinstitut GmbH. Die Prüfergebnisse beziehen sich ausschließlich auf die im Prüfbericht spezifizierten Prüfgegenstände. (DIN EN ISO 17025).

Der Prüfbericht wurde am 15.11.2016 um 10:39 Uhr durch Dipl.-Ing. Robert Ottenberger (Niederlassungsleiter) elektronisch freigegeben und ist ohne Unterschrift gültig.

SYNLAB Umweltinstitut GmbH - Hohnerstraße 23 - 70469 Stuttgart

BWU Institut für Umwelt- und Hydrogeologie Herr Dr. Hönig Dettinger Str. 146 73230 Kirchheim / Teck SYNLAB Umweltinstitut GmbH Umweltinstitut Stuttgart

Telefon:

0711-16272-0

Telefax:

0711-16272-51

E-Mail:

sui-stuttgart@synlab.com

Internet:

www.synlab.de

Seite 1 von 2

Datum:

15.11.2016

Prüfbericht Nr.:

UST-16-0137255/03-1

Auftrag-Nr.:

UST-16-0137255

Ihr Auftrag:

schriftlich vom 08.11.2016

Projekt:

BG Steinriegel, Wendlingen / Proj.-Nr.: 2-15-157

Eingangsdatum:

08.11.2016

Probenahme durch:

Auftraggeber

Probenahmedatum:

07.11.2016

Prüfzeitraum:

08.11.2016 - 15.11.2016

Probenart:

Asphalt

Probenbezeichnung:

Austr. / 0,0-0,05 m

Probe Nr.

UST-16-0137255-01

Original

Polycyclische aromatische Kohlenwasserstoffe

Parameter	Einheit	Messwert	Verlahren
Naphthalin	mg/kg	<0,05	DIN ISO 18287
Acenaphthylen	mg/kg	<0,05	DIN ISO 18287
Acenaphthen	mg/kg	<0,05	DIN ISO 18287
Fluoren	mg/kg	<0,05	DIN ISO 18287
Phenanthren	mg/kg	<0,05	DIN ISO 18287
Anthracen	mg/kg	<0,05	DIN ISO 18287
Fluoranthen	mg/kg	<0,05	DIN ISO 16287
Pyren	mg/kg	<0,05	DIN ISO 18287
Benzo(a)anthracen	mg/kg	<0,05	DIN ISO 18287
Chrysen	mg/kg	<0,05	DIN ISO 18287
Benzo(b)fluoranthen	mg/kg	<0,05	DIN ISO 18287
Benzo(k)fluoranthen	mg/kg	<0,05	DIN ISO 18287
Benzo(a)pyren	mg/kg	<0,05	DIN ISO 18287
Dibenz(ah)anthracen	mg/kg	<0,05	DIN ISO 18287
Benzo(ghi)perylen	mg/kg	<0,05	DIN ISO 18287
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	DIN ISO 18287
Summe PAK EPA	mg/kg		DIN ISO 18287

Eine auszugsweise Veröffentlichung bedarf der Zustimmung der SYNLAB Umweitinstitut GmbH. Die Prüfergebnisse beziehen sich ausschließlich auf die im Prüfbericht spezifizierten Prüfgegenstände. (DIN EN ISO 17025).

Der Prüfbericht wurde am 15.11.2016 um 11:17 Uhr durch Dipl.-Ing. Robert Ottenberger (Niederlassungsleiter) elektronisch freigegeben und ist ohne Unterschrift gültig.

SYNLAB Umweltinstitut GmbH - Hohnerstraße 23 - 70469 Stuttgart

BWU Institut für Umwelt- und Hydrogeologie Dettinger Str. 146 73230 Kirchheim / Teck

SYNLAB Umweltinstitut GmbH Umweltinstitut Stuttgart

Durchwahl:

0711-16272-0

Telefax:

0711-16272-51 sui-stuttgart@synlab.com

E-Mail: Internet:

Datum:

www.synlab.de

•••

Seite 1 von 3

15.11.2016

Prüfbericht Nr.:

UST-16-0110252/01-2

Auftrag-Nr.:

UST-16-0110252

Ihr Auftrag:

schriftlich vom 20.09.2016

Projekt:

Wendlingen, BG Steinriegel - Projektnr.: 2-15-157

Probenahme:

16.09.2016

Probenahme durch:

Auftraggeber

Eingangsdatum:

20.09.2016

Prüfzeitraum:

20.09.2016 - 22.09.2016

Probenart:

Asphalt

Prüfbericht Nr. Auftrag-Nr.: UST-16-0110252/01-1 UST-16-0110252

22.09.2016

Seite 2 von 3

Untersuchungsergebnisse

Probe-Nr.:	UST-16-0110252-01	UST-16-0110252-02	UST-16-0110252-03	UST-16-0110252-04
Bezeichnung:	KB 1	KB 2	KB 3	KB 4

Original

Polycyclische aromatische Kohlenwasserstoffe

Naphthalin	mg/kg	<0,05	<0,05	<0,05	<0,05
Acenaphthylen	mg/kg	1	<0,05	<0,05	<0,05
Acenaphthen	mg/kg	4,4	0,55	1,2	<0,05
Fluoren	mg/kg	5	0,2	1,7	<0,05
Phenanthren	mg/kg	120	1,3	17	1,1
Anthracen	mg/kg	44	<0,05	6,4	<0,05
Fluoranthen	mg/kg	200	2,4	39	<0,05
Pyren	mg/kg	210	3,6	48	<0,05
Benzo(a)anthracen	mg/kg	110	<0,05	20	<0,05
Chrysen	mg/kg	95	<0,05	21	<0,05
Benzo(b)fluoranthen	mg/kg	51	<0,05	11	<0,05
Benzo(k)fluoranthen	mg/kg	35	<0,05	7,9	<0,05
Benzo(a)pyren	mg/kg	52	<0,05	12	<0,05
Dibenz(ah)anthracen	mg/kg	3	<0,05	1	<0,05
Benzo(ghi)perylen	mg/kg	64	<0,05	13	<0,05
Indeno(1,2,3-cd)pyren	mg/kg	28	<0,05	5,3	<0,05
Summe PAK EPA	mg/kg	1000	8,1	200	1,1

Eine auszugsweise Veröffentlichung bedarf der Zustimmung der SYNLAB Umweltinstitut GmbH. Die Prüfergebnisse beziehen sich ausschließlich auf die im Prüfbericht spezifizierten Prüfgegenstände. (DIN EN ISO 17025).

Robert Ottenberger

Niederlassungsleiter

Prüfbericht Nr. Auftrag-Nr.: UST-16-0110252/01-1 UST-16-0110252

22.09.2016

Seite 3 von 3

Angewandte Methoden				
Parameter	Norm			
Naphthelin	DIN ISO 18287			
Acenaphthylen	DIN ISO 18287			
Acenaphthen	DIN ISO 18287			
Fluoren	DIN ISO 18287			
Phenanthren	DIN ISO 18287			
Anthracen	DIN ISO 18287			
Fluoranthen	DIN ISO 18287	-		
Pyren	DIN ISO 18287			
Benzo(a)anthracen	DIN ISO 18287			
Chrysen	DIN IŞO 18287			
Benzo(b)fluoranthen	DIN ISO 18287			
Benzo(k)fluoranthen	DIN ISO 18287			
Benzo(a)pyren	DIN ISO 18287			
Dibenz(ah)anthracen	DIN ISO 18287			
Benzo(ghi)perylen	DIN ISQ 18287			
ndeno(1,2,3-cd)pyren	DIN ISO 16287			
Summe PAK EPA	DIN ISO 18287			